Welcome!

- Thank you for joining today’s webinar: Developing and Applying Open-Source Implementations of OpenADR

- If you have a question please use the question box located on the right side of your screen.

- Questions for our speaker will be addressed at the end of the presentation.

- This webinar will be recorded for future playback.
Walt Johnson is a Technical Executive at the Electric Power Research Institute (EPRI), where he specializes in smart grid technologies, standards, and IT Enterprise Architecture.

He manages EPRI’s Automated Demand Response and Ancillary Services Demonstration Project, supports the Transmission and Distribution Modernization Demonstration Projects on Data Analytics, and leads the new ICT Innovators Forum.

Prior to joining EPRI, Walt spent nearly ten years at the California Independent System Operator (CAISO), during which time he served on the Technical Advisory Group for LBNL’s original AutoDR/OpenADR project.
Developing and Applying Open-Source Implementations of OpenADR

Walt Johnson
Technical Executive

OpenADR Alliance Webcast
March 24, 2015
Today’s Presentation

- What We’ll Talk About
 - The EPRI Project
 - What, why, who,…
 - The EPRI Software
 - Who, what, how, where,…
 - Deployments
 - Project demos, other EPRI projects, commercial service
 - Software Enhancements

- What We Won’t Talk About
 - Demand Response (in general)
 - The OpenADR Specification
 - History, profiles, services, signal types,…
 - Other ADR Standards
 - IRC WDRCP, IEC, SEP2,…
 - How to use the EPRI Software
The Electric Power Research Institute

Independent
Objective, scientifically-based results addressing reliability, efficiency, affordability, health, safety and the environment

Nonprofit
Chartered to serve the public benefit

Collaborative
Bringing together scientists, engineers, academic researchers, and industry experts

Together… Shaping the Future of Electricity
The EPRI Project

“Automated Demand Response and Ancillary Services Demonstration”
OpenADR Project Activities

EPRI Project Demonstrations

- **ISOs**: CAISO and NYISO
- **US Utilities**: AEP, KCPL, SDG&E, Southern Co.
- **International Utilities**: ESB Networks (Ireland), EdF (France), TEPCO (Japan)

Other Deployments in Progress

- California Utilities
- LBNL
- OpenADR Alliance (~100 Members)
- Other EPRI Activities

International Adoption

- Now an IEC Publicly Available Specification (PAS)

Virtual Top Node (VTN) - Server
http://sourceforge.net/projects/openadr2vtn/

Virtual End Node (VEN) - Standalone Client
http://sourceforge.net/projects/openadr2bven-pull/

Virtual End Node (VEN) - Client Library
http://sourceforge.net/projects/openadrvenclibrary/

EPRI Open-Source Contribution Accelerating Adoption;
Significant Global Impact
Drivers - Benefits of Standardized DR/DER Messaging

- Interoperability for Pricing and DR Events (Utilities and ISOs)
- Commercial Off-The-Shelf (COTS) Products
- Increased Operational Efficiency, Reliability, and Security
 - “Fast DR” and ancillary services
 - Use of low-cost communications networks
- Lower Design and Installation Costs
- Lower Operation and Maintenance Costs
- New Services through Competitive Innovation
- Larger Pool of Talent to Support and Maintain Standardized Systems
EPRI’s OpenADR Development

EPRI developed the open-source software to:

• Gain familiarity with the standard
 • Profile A and B capabilities
 • Relationship between VTNs and VENs
• Provide EPRI project host sites access to 2.0 software
• Provide utilities and suppliers with source code to develop and test with programs and other products
• Because specifications can be tested *only* through implementations
Why Make the Software Open Source?

By providing the source code, EPRI hopes that:

- Utilities will test OpenADR with their DR programs
 - Reducing costs to deploy pilots
 - Increasing internal knowledge
 - More deployments lead to a competitive VEN marketplace
- The specification will be improved by providing to working group knowledge gained from deployments
Architectural Requirements for an OpenADR Implementation
XML Messages

Convert XSD to Language Specific Objects

XML Schema Definition (XSD) → Translation Tool
 XJC (Java) SCOMP (Java)
 WSDL.exe (.NET) gsoap (C/C++)
 others → Java/C#/C/C++/
 language of choice objects & classes,
 serializer, deserializer

Using the XML objects/classes and serializer/deserializer

VEN
 oadr Object
 Java/C#/C/C++, etc
 Serialize object to XML/
 Deserialize XML to object
 XML message
 oadrRequestEvent
 oadrCreatedEvent
 etc → Web Service
 Apache, IIS, Tomcat, etc
 (ElEvent, etc)

VTN
 oadr Object
 Java/C#/C/C++, etc
 Serialize object to XML/
 Deserialize XML to object
 XML message
 oadrRequestEvent
 oadrCreatedEvent
 etc
Client/Server Architecture

- VTN – Virtual Top Node (typically the server)
- VEN – Virtual End Node (typically the client)
- The client/server model is a good fit for a DR program, where a single authority (operating the VTN) calls events to manage load at many clients (though the VENs)
- The Push model used in OpenADR allows a VTN to push data to a VEN; but note that although this is still a client/server design, the VTN acts as an HTTP client and the VEN acts as an HTTP server
Pull/Poll Messaging

- Pull and Poll are the same interaction between the VTN and the VEN
- The VEN initiates the request and the VTN responds
Push Messaging

- The VTN (server) initiates the exchange when it sends to the VEN (client)
- The VEN must register a Push endpoint with the VTN (this is an out-of-band process for Profile A)
- Push can provide a faster mechanism for communicating with clients
- Additional firewall ports might need to be opened to provide access from the VTN to the VEN
Transport and Security Requirements
Transport Choices

- Transport mechanism must be selected for the data exchanges
 - VTNs must support all (both) transport mechanisms
 - VENs can select one transport mechanism
- EPRI selected a simple HTTP implementation to begin
- XMPP (Extensible Messaging and Presence Protocol) is also specified
- Some OpenADR Alliance members are using Openfire (http://www.igniterealtime.org/projects/openfire/)
 - An open-source XMPP implementation
 - EPRI’s implementation uses this as well
Transport Implementation

- **Simple HTTP**
 - All messages use POST to avoid caching (and other issues)
 - The XML payload is the message body in the HTTP request
 - The service name is appended to the endpoint
 - Example: http://.../oadr2a-vtn/OpenADR2/Simple/EiEvent

- **XMPP**
 - Inherently two-way
Public Key Cryptography

- Works with public/private key pairs
- Public key is shared with all, the private key is kept private
- If a public key is used to encrypt, only the private key can decrypt (and vice-versa)
Conformance and Certification
Certification Requirements

- Certification requires adhering to:
 - Profile conformance rules
 - PICS (Protocol Implementation Conformance Statement)
- Managed by OpenADR Alliance
- Product must be tested by an authorized test service provider. Intertek (http://www.intertek.com/) is the testing and certification laboratory for the OpenADR Alliance
- Must be alliance member to have certificated products

Note: Use of EPRI’s Alliance-certified software to create a new application does *not* confer certification on the resulting application. All applications are individually certified by the OpenADR Alliance.
<table>
<thead>
<tr>
<th>Rule</th>
<th>VTN, EiEvent Service, oadrDistributeEvent Payload</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>For both eiEventSignal and eiEventBaseline the following substitution group items shall be used:</td>
</tr>
<tr>
<td></td>
<td>- streamPayloadBase = signalPayload</td>
</tr>
<tr>
<td></td>
<td>- payloadBase = payloadFloat</td>
</tr>
<tr>
<td></td>
<td>The number of signalPayload elements in each interval must be equal to 1.</td>
</tr>
<tr>
<td>101</td>
<td>The uid element is required for each eiEventBaseline interval. Within a single eiEventBaseline, uid must be expressed as an interval number with a base of 0 and an increment of 1 for each subsequent interval.</td>
</tr>
<tr>
<td>102</td>
<td>For both eiEventSignal and eiEventBaseline, the interval duration element must appear in each interval and the sum of interval durations must add up to overall duration element specified immediately in eiActivePeriod:properties:duration for event signals and eiEventSignal:eiEventBaseline:duration for baselines.</td>
</tr>
<tr>
<td>103</td>
<td>For both eiEventSignal and eiEventBaseline, the dtstart element shall NOT be included in the interval specification.</td>
</tr>
</tbody>
</table>

- OpenADR_2_0b_Profile_Specification_v0_9_20130318.pdf
Conformance Rules: PICS

- Questionnaire filled out by manufacturer
- A series of yes/no questions
- Released to the public, it provides an idea of what’s supported by the implementation and any limitations

Core Operation Payload Schema Conformance

For each payload generated by an implementation, indicate if it conforms to the indicated schema.

<table>
<thead>
<tr>
<th>Item</th>
<th>Requirement</th>
<th>Reference</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>oadrDistributeEvent validates against the Alliance “A” profile schema</td>
<td>Alliance Schema</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>oadrRequestEvent validates against the Alliance “A” profile schema</td>
<td>Alliance Schema</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>oadrCreateEvent validates against the Alliance “A” profile schema</td>
<td>Alliance Schema</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>oadrResponse validates against the Alliance “A” profile schema</td>
<td>Alliance Schema</td>
<td></td>
</tr>
</tbody>
</table>

Note: VTNs generate items 1 and 4, Push VENs item 2, and Pull VENs items 2 and 3.

- OADR 2.0a PICS_v1_0_4.docx (comes with TestSet purchase)
Conformance Rules: TestSet

- The Alliance provides the TestSet (for a fee)
- The TestSet has many test cases for testing conformance rules
- The TestSet documentation shows which test cases exercise which conformance rules

Appendix B – Conformance Rules to Test Case Mapping

The following table is a cross reference between alliance specific conformance rules and test cases that validate their conformance. Refer to section 11.2 of the OpenADR Alliance 2.0a Profile Specification for detailed descriptions of each conformance rule.

<table>
<thead>
<tr>
<th>Conformance Rule</th>
<th>Test Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>- Proper format validated on each payload by schema validation</td>
</tr>
<tr>
<td>2</td>
<td>- Validated by Conformance Rule 2 Payload Validation (see Appendix A)</td>
</tr>
</tbody>
</table>
| 3 | - E0 & E3 = 0250, 285
 | - E2 & E3 = 510, 520
 | - Validated by Conformance Rule 15 Payload Validation (see Appendix A) |
| 4 | - E2 & E3 = 0452 |
| 5 | - E2 & E3 = 0470, 0474, 0476, 0478, 0480, 0490, 0492, 0494, 0496, 0498 |
| 6 | - E0 & E1 = 0130 |
| 7 | - Validated by Conformance Rule 7 Payload Validation (see Appendix A) |
| 8 | - Validated by Conformance Rule 8 Payload Validation (see Appendix A) |
| 9 | - Validated by Conformance Rule 9 Payload Validation (see Appendix A) |

- OpenADR_2_0b_Profile_Specification_v0_9_20130318.pdf
Conformance Rules: TestSet

- A Java-based program written with Eclipse
- Developed and maintained by QualityLogic
- Contains many push and pull tests for VENs and VTNs
- Sends test messages to a VTN and validates the response
- Receives test messages from a VEN and validates the response
The EPRI Software
VTN Functions
VEN Functions

VNEN Functions

VEN Features

- Opt in
- Opt out
- Set poll interval
- View event details
- View XML payloads
EPRI's OpenADR 2.0b Open-Source Processes

Secure Host Server

SourceForge.net

- EPRI Export Control
- EPRI Quality Control
- Development
- Source Code
- Build/Deploy
- Executable
- C++ Library
- Custom DRMS or Client
- Simple DRMS
- Desktop Client for DRMS
- Embed into End-point

VTN – Automated DR Demonstrations Project
VTN – CEA-2045 Demonstrations Project
VTN – Client Development (Vendors)
Virtual Top Node (VTN) and Virtual End Node (VEN)

- Complete OpenADR 2.0b-compliant server and standalone client
- Made available to the open source community in February 2014
- Received certification in October 2014
- Posted certified versions in December 2014

View of all XML Messages
C++ End-Node Library

- Implements the functions of an OpenADR 2.0b HTTP Pull VEN
- Generates compliant messages for all four Profile B services
- Manages HTTP/s connection using cURL and OpenSSL libraries
- Can be used to create a compliant VEN
- Intended for embedded applications
<table>
<thead>
<tr>
<th>Role</th>
<th>VTN</th>
<th>VEN</th>
<th>VEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designed Use</td>
<td>DRMS</td>
<td>Desktop Client</td>
<td>Embedded Client</td>
</tr>
<tr>
<td>License</td>
<td>BSD 3-Clause</td>
<td>BSD 3-Clause</td>
<td>BSD 3-Clause</td>
</tr>
<tr>
<td>Profiles</td>
<td>2.0a and 2.0b</td>
<td>2.0b</td>
<td>2.0b</td>
</tr>
<tr>
<td>Data Models</td>
<td>Push & Pull (Poll)</td>
<td>Pull (Poll)</td>
<td>Pull (Poll)</td>
</tr>
<tr>
<td>Transports</td>
<td>HTTP, XMPP</td>
<td>HTTP</td>
<td>HTTP</td>
</tr>
<tr>
<td>Programming Language</td>
<td>JRuby, Java</td>
<td>C#</td>
<td>C++</td>
</tr>
<tr>
<td>Tested Operating</td>
<td>Linux, Mac OS</td>
<td>Windows 7, 8</td>
<td>C++</td>
</tr>
<tr>
<td>Systems</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

EPRI OpenADR-Related Projects
California ISO (CAISO) Demonstration

Research Questions

• Could OpenADR be used to support an existing “Fast DR” wholesale demand response program (Proxy Demand Resource – PDR)?

• What building loads should be targeted?

• How should the targeted loads be operated to optimize shed potential?

• Could an OpenADR 2.0 VEN be integrated with the building management system?
Research Questions

- How can OpenADR be integrated into legacy buildings?
- Could OpenADR support a real-time price signal?
- How does OpenADR support critical peak price signals?
- How would building loads respond to these signals?
- What loads should be targeted?
Targeted Demand Response

Proof-of-concept DR Program Architecture

- Experiment is designed to process proposed third-party demand response signals in near-real time

Use of OpenADR 2.0

- Interface between SERVO and DR Aggregator
- Designed to manage LV and HV network constraints while at the same time equitably managing customer participation
- Experiment uses OpenADR source code developed under this project

Managing Network Constraints using OpenADR
EDF: End-to-End Testing using OpenADR2.0b Devices

OpenADR 2.0b server (VTN) and client (VEN) developed by EPRI

Software Topology

Selected OpenADR 2.0b end devices will be connected to real loads (heater, water heater, lighting, air conditioning) in EDF R&D’s labs

Source: EDF R&D, 2014
Future Developments

- Other EPRI OpenADR-Related Projects
 - VTN Usability Enhancements
 - Improved user interface to simplify actions associated with common utility use cases
 - CIM Interface for VTN
 - Connecting the IRC’s WDRCP (CIM-based wholesale DR messages) to OpenADR
 - CEA-2045
 - Modular communication controllers using OpenADR

- EPRI ICT Innovators Forum
 - Improved alignment between utility needs and wants and solution provider offerings and roadmaps
 - New project just being launched now
Together…Shaping the Future of Electricity

Walt Johnson
hwjohnson@epri.com
(650) 855-2013
Q&A

- Recording and slides from this presentation will be available at www.openadr.org.

- For more information on this presentation, contact Walt Johnson at hwjohnson@epri.com.

- The OpenADR Webinar Series will continue throughout 2015. More information on future webinar topics can be found on www.openadr.org.
Follow OpenADR

Follow: @OpenADRAliance

Connect: OpenADR Alliance Open Group

Like: OpenADR Alliance

Explore: OpenADR Alliance Channel
Thank You!

Rolf Bienert
Technical Director
rolf@openadr.org
+1 925 336 0239

Barry Haaser
Managing Director
barry@openadr.org
+1 408 310 9213

Shannon Mayette
Marketing Director
shannon@openadr.org
+1 602 882 4733