Energy Smart Appliances Standards for Demand Side Response

PAS 1878 and 1879 standards and the Interoperable Demand Side Response (IDSR) programme

Dr. Laura Schade https://www.linkedin.com/in/laura-schade-004809117/

Senior Energy Engineer

Science and Innovation for Climate and Energy (SICE)

Objectives

- Standardisation helps to lower costs and promote innovation in technologies, while accelerating the uptake of secure and interoperable smart products and services
- Develop technical specifications which could be referenced and required by future regulations and would enable certification
- Demonstrate **UK leadership** on the international stage, by promoting published standards for **international adoption**

Approach: Scope

Principles

 4 policy principles underpin the standards, developed in consultation with industry stakeholders

Compatibility

- Compatibility with, but no mandate of, the GB Smart Metering system
- Alignment with existing international standards where possible

Innovation

 Specify only the minimum requirements to deliver DSR in line with 4 Policy Principles, which allows innovation on top 2. Cold 3. Wet
Appliances Appliances

1. HVAC DSR 4. Battery
Storage

5. EV Smart
Chargepoints

Policy Principles			
1. Interoperability	the ability of an ESA to work seamlessly across any DSR service operated by any system player.		
2. Data privacy	the secure storing of data on the device or with any controlling party.		
3. Grid-stability	the prevention of outages on the grid caused by erroneous operation of ESAs.		
4. Cyber-security	the prevention of unauthorized access to an ESA by third-parties.		

Approach: Process

British Standards Institution (BSI)

- A standardised technical framework, covering both **ESAs and DSR** for end-toend system across 2 PASs
- Developed in an **industry-led** process, with expert **Steering Groups** and a programme level Strategic Advisory Group
- Producing **PASs** (publicly available specification) in a fast-track standards process, which is **updated** every **2 years**

PAS 1878 Appliance-side: "ESA specification for classification"

PAS 1879 Grid-side: "DSR framework for operation"

BSI ESA Programme					
40+ Organisa	tions (9 Trade	Associations)			
ABCB	Energy UK	Newcastle Uni (EV)			
ADE	ESC	NG ESO			
APPLiA	ESSAC	Ofgem			
BEAMA	EVET	OVO/Kaluza			
BSI Assurance	Flexitricity	Pearlstone Energy			
Carbon Co-op	Geo	Samsung			
СВІ	Hive	Schneider Electric			
Citizens Advice	HMG	SMMT			
CPIN	Innovate UK (EV)	Sustainability First			
CRED	Kiwipower	Tech UK			
CSO Confidential	Landis+Gyr	UKAS			
EDF Energy	Moixa	UKERC			
ENA	NCSC	WPD			
Also 120+ individuals on Invited Review Panel					

Definitions – DSRSP, CEM, ESA

DSR Service Provider (DSRSP)

 An organization providing demand-side related energy management services to electricity system operators, electricity utilities and electricity generators

Consumer Energy Manager (CEM)

- A logical entity, that can be physical or virtual, which deals with flexibility information and requests
- Translates between the DSRSP and the ESA

Energy Smart Appliance (ESA)

 An internet connected device that can modulate or shift its electricity consumption in response to signals.

System Architecture – Part 1

2 DSR service types:

Routine DSR

Operate based on **incentives** set in **advance**, often **multi-party market signals** e.g. TOUT incentive via **Supplier**

Response DSR

Operate based on **requests** made in **real time**, often due to firm **bi-lateral contracts** e.g. grid FR request via **DSRSP**

PAS specifies how response requests are sent/received, but how routine incentives are optimised against is left to innovation

System Architecture – Part 2

3 interfaces:

- A Interoperable, specified for any DSRSP
 - OpenADR
- B Proprietary, can be ESA specific
 - e.g. can be OCPP for EV-CP
- M (optional) for GB Smart Metering

ESA must be **supplied with CEM** as a **minimum**, but this does **not restrict 3**rd **party** provided CEMs

User **subscribes individual ESAs** to a DSR service, allows **specialist DSRSPs** for specific ESAs

Interface A

- PAS 1878 mandates that any implementation of Interface A shall support the use of **OpenADR**
- The use of OpenADR guarantees interoperability and therefore enables consumer choice
- PAS 1878 provides a structure that is mapped on to the OpenADR protocol

System Operation – Part 1

A hierarchy of DSR operation is defined, with consumer preferences always respected:

Higher Priority

Routine Mode

This is **baseline** DSR operation

The ESA controls electricity consumption according to the **consumers wishes** and any **external incentives** e.g. TOUT or grid CO2 intensity

Response Mode

This **overrides** the baseline during a **response request**

The ESA controls electricity consumption according to the **consumers wishes** and **DSRSP's chosen flexibility option**, e.g. for frequency response

Consumer override Mode

Additional manual override (note: their preferences are already built in)

- Failsafe protections Mode
- During a Response request, the DSRSP will statistically request flexibility from ~100,000 devices which makes the
 system more resilient as some non-response is expected.

System Operation – Part 2

- A ESA creates flexibility offers as power profiles (P vs T), based on consumer preferences, appliance operation and any external incentives.
- At a <u>minimum</u> **3** power profiles:
 - (1) Intended Operation (IO)

Consumers preferences baseline Runs in Routine mode

(2) Most Delayed (MD)

Consumers preferences with maximum delay

Option for Response mode

(3) Least Delayed (LD)

Consumers preferences with minimum delay

Option for Response mode

 The 3 profiles are updated whenever their status changes and sent to the DSRSP, so the DSRSP keeps a live merit order for response requests.

Worked Example (illustrative)

• During Routine Mode, the ESA regularly creates and sends power profiles to the System Operator / Service Contractor DSRSP, the route is:

(1) ESA>CEM>DSRSP

- The ESA sends updates whenever the flexibility status changes.
- During a DSR Response request, the DSRSP selects an appropriate power profile
 and duration time and sends the chosen flexibility to the CEM for the ESA to
 implement, the route is:

(2) DSRSP>CEM>ESA

- The DSRSP keeps a live merit order of **pre-registered power profiles**, so a **single request** delivers a DSR response, enabling fast response **high-value DSR services**.
- During Response Mode, the ESA regularly sends active power and power profile updates to the DSRSP, the route is:

(3) ESA>CEM>DSRSP

- The ESA sends **updates** whenever the flexibility **status changes** and in accordance with the **technical requirements** of the **DSR service**.
- The DSRSP can then call more/less DSR response from its live merit order as necessary to meet system requirements.

Interoperable Demand Side Response Programme

- Over £12.8M funding; 13 projects including independent testing/demonstration partners
- **Development and demonstration** of energy smart appliances and systems for the delivery of interoperable demand side response:
 - PAS 1878/1879
 - GB Smart Metering System
- Providing feedback on PAS 1878
- Part of the up to £65m <u>Flexibility Innovation Programme</u> within the £1bn <u>Net Zero Innovation Portfolio</u>

https://www.gov.uk/government/collections/interoperable-demand-side-response-programme

Interoperable Demand Side Response Programme

Stream	Project name	Lead applicant	Partner Organisations
1	Energy Smart Heat Pump	Samsung Electronics UK	Passiv UK
1	Project DSRR	Green Energy Options	Vailant, EDF, GreenSync Pty Ltd, Smarter Grid Solutions Limited
1	PAS-DSRFlex	Landis + Gyr Ltd	
1	Zen Smart IDSR Interoperability	Systems Mechanics Limited	Ev.energy Limited, carbonTRACK UK Limited
1	IREF: Interoperable Residential Energy Flexibility	Centrica Business Solutions Ltd	Mixergy Ltd, Daikin Airconditioning Limited, Glen Dimplex UK Limited
1	Tomorrow's Homes Today	Voltalis UK	The Electric Heating Company Ltd, Dcbel

Interoperable Demand Side Response Programme

Stream	Project name	Lead applicant	Partner Organisations
2	Smart-DSRFlex	Landis + Gyr Ltd	
2	ChameleonFIP	Chameleon Technology (UK) Limited	
4	Laboratory testing	Engage Consulting Ltd	NMI, SMS
4	Demonstrations in Real World	Resillion	Quality Logic, ScottishPower, Power Networks, Demonstration Centre
3	OpenDSR for All	The Society for the Reduction of Carbon Limited	
3	Project Open IC	Green Energy Options Ltd	
3	Feasibility assessment to understand the different functional and technical options available to create interoperable domestic energy management system	Accenture UK	

Summary

The UK Government has sponsored the development of PAS 1878 and PAS 1879

These create an endto-end framework for domestic DSR

Interface A shall support the use of Open-ADR to enable interoperability

The UK Government has funded the **IDSR Programme** which is developing domestic DSR systems against PAS 1878 and PAS 1879

The findings from this programme will

feedback into the next version of PAS 1878

Dr. Laura Schade https://www.linkedin.com/in/laura-schade-004809117/

Senior Energy Engineer

Science and Innovation for Climate and Energy (SICE)

System Architecture – HEMS integration

DSR service type:

Routine DSR

Operate based on **incentives** set in **advance**, often **multi-party market signals**

e.g. household optimisation via **HEMS** (Home Energy Management System)

Interface:

- C Interoperable, specified for any HEMS
 - (currently undefined)
- B Proprietary, can be ESA specific
 - e.g. can be OCPP for EV-CP
- A Interoperable, specified for any DSRSP
 - OpenADR (+optional EEBUS/DLMS/etc)
- M (optional) for GB Smart Metering

Mapping of PAS 1878 and CENELEC/IEC functional architectures

PAS 1878 architecture

CENELEC and IEC architecture

